Autumn Scheme of Learning

Year 4

\#MathsEveryoneCan

2019-20
Rose

Contents

- Notes and Guidance 3
- Yearly Overview 11
- Autumn Blocks
- Block 1 - Number: Place Value 12
- Block 2 - Number: Addition and Subtraction 40
Block 3 - Measurement: Length and Perimeter 62
Block 4 - Number: Multiplication and Division 72

Welcome

Welcome to the White Rose Maths' new, more detailed schemes of learning for 2019-20.

We have listened to all the feedback over the last 2 years and as a result of this, we have made some changes to our primary schemes. They are bigger, bolder and more detailed than before.

The new schemes still have the same look and feel as the old ones, but we have tried to provide more detailed guidance. We have worked with enthusiastic and passionate teachers from up and down the country, who are experts in their particular year group, to bring you additional guidance. These schemes have been written for teachers, by teachers.

We all believe that every child can succeed in mathematics. Thank you to everyone who has contributed to the work of White Rose Maths. It is only with your help that we can make a difference.

We hope that you find the schemes of learning helpful. As always, get in touch if you or your school want support with any aspect of teaching maths.

If you have any feedback on any part of our work, do not hesitate to contact us. Follow us on Twitter and Facebook to keep up-to-date with all our latest announcements.

Thanks from the White Rose Maths Team
\#MathsEveryoneCan

White Rose Maths contact details
support@whiterosemaths.com

- @WhiteRoseMaths
(f) White Rose Maths

What's included?

Our schemes include:

- Small steps progression. These show our blocks broken down into smaller steps.
- \quad Small steps guidance. For each small step we provide some brief guidance to help teachers understand the key discussion and teaching points. This guidance has been written for teachers, by teachers.
- A more integrated approach to fluency, reasoning and problem solving.
- Answers to all the problems in our new scheme.
- This year there will also be updated assessments.
- We are also working with Diagnostic Questions to provide questions for every single objective of the National Curriculum.

Teaching notes and examples

Answers to Reasoning Questions

Small Steps Guidance

How to use the small steps

We were regularly asked how it is possible to spend so long on particular blocks of content and National Curriculum objectives.

We know that breaking the curriculum down into small manageable steps should help children understand concepts better. Too often, we have noticed that teachers will try and cover too many concepts at once and this can lead to cognitive overload. In our opinion, it is better to follow a small steps approach.

As a result, for each block of content we have provided a "Small Step" breakdown. We recommend that the steps are taught separately and would encourage teachers to spend more time on particular steps if they feel it is necessary. Flexibility has been built into the scheme to allow this to happen.

Teaching notes

Alongside the small steps breakdown, we have provided teachers with some brief notes and guidance to help enhance their teaching of the topic. The "Mathematical Talk" section provides questions to encourage mathematical thinking and reasoning, to dig deeper into concepts.

We have also continued to provide guidance on what varied fluency, reasoning and problem solving should look like.

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of opportunities to build reasoning and problem solving elements into the curriculum.

For more guidance on teaching for mastery, visit the NCETM website:

https://www.ncetm.org.uk/resources/47230

Concrete - Pictorial - Abstract

We believe that all children, when introduced to a new concept, should have the opportunity to build competency by taking this approach.

Concrete - children should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - alongside this children should use pictorial representations. These representations can then be used to help reason and solve problems.

Abstract - both concrete and pictorial representations should support children's understanding of abstract methods.

Need some CPD to develop this approach? Visit www.whiterosemaths.com for find a course right for you.

Supporting resources

NEW for 2019-20!
We have produced supporting resources for every small step from Year 1 to Year 8.

The worksheets are provided in three different formats:

- Write on worksheet - ideal for children to use the ready made models, images and stem sentences.
- Display version - great for schools who want to cut down on photocopying.
- PowerPoint version - one question per slide. Perfect for whole class teaching or mixing questions to make your own bespoke lesson.

For more information visit our online training and resources centre www.resources.whiterosemaths.com or email us directly at support@whiterosemaths.com

Training

White Rose Maths offer a plethora of training courses to help you embed teaching for mastery at your school.

Our popular JIGSAW package consists of five key elements:

- CPA
- Bar Modelling

- Mathematical Talk \& Questioning
- Reasoning \& Problem Solving
- Thinking through Variation

For more information and to book visit our website www.whiterosemaths.com

NEW for 2019-20!
We have made the above courses available in a digital format. You can now have CPD whenever you want, wherever you want in easy to digest bite size chunks. Find out more at www.resources.whiterosemaths.com

FAQs

If we spend so much time on number work, how can we cover the rest of the curriculum?

Children who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a child's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.
In addition, schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

Should I teach one small step per lesson?

Each small step should be seen as a separate concept that needs teaching. You may find that you need to spend more time on particular concepts. Flexibility has been built into the curriculum model to allow this to happen. This may involve spending more than one lesson on a small step, depending on your class' understanding.

How do I use the fluency, reasoning and problem solving questions?

The questions are designed to be used by the teacher to help them understand the key teaching points that need to be covered. They should be used as inspiration and ideas to help teachers plan carefully structured lessons.

How do I reinforce what children already know if I don't teach a concept again?

The scheme has been designed to give sufficient time for teachers to explore concepts in depth, however we also interleave prior content in new concepts. E.g. when children look at measurement we recommend that there are lots of questions that practice the four operations and fractions. This helps children make links between topics and understand them more deeply. We also recommend that schools look to reinforce number fluency through mental and oral starters or in additional maths time during the day.

Notes and Guidance

Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who's your favourite?

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & \text { C } \\ & \frac{1}{5} \\ & \frac{5}{2} \end{aligned}$	Number: Place Value				Number: Addition and Subtraction				Number: Multiplication and Division			
$\begin{aligned} & \text { no } \\ & \text { 름 } \\ & \text { 号 } \end{aligned}$	Numb	: Multip d Division	cation	$\begin{gathered} \text { Measurement: } \\ \text { Area } \end{gathered}$	Number: Fractions				Number: Decimals			
	Num Dec		Measurement: Money			Statistics		Geometry: Properties of Shape				

White
 Autumn - Block 1
 R@se
 Maths Place Value

Overview

Small Steps

NC Objectives

Count in multiples of $6,7,9, \underline{25}$ and 1,000 .

Find 1,000 more or less than a given number.

Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens and ones).

Order and compare numbers beyond 1,000.

Identify, represent and estimate numbers using different representations.

Round any number to the nearest 10,100 and 1,000 .

Solve number and practical problems that involve all of the above and with increasingly large positive numbers.

Count backwards through zero to include negative numbers.

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

Roman Numerals

Notes and Guidance

Children will build on their knowledge of numerals to 12 on a clock face, from Year 3, to explore Roman Numerals to 100

They explore what is the same and what is different between the number systems, including the fact that in the Roman system there is no symbol for zero and so no placeholders.

Mathematical Talk

Why is there no zero in the Roman Numerals? What might it look like?

Can you spot any patterns? If 20 is XX what might 200 be?
How can you check you have represented the Roman Numeral correctly? Can you use numbers you know, such as 10 and 100 to help you?

Varied Fluency

Lollipop stick activity.
The teacher shouts out a number and the children make it with lollipop sticks.
Children could also do this in pairs or groups, and for a bit of fun they could test the teacher!
\square Each diagram shows a number in numerals, words and Roman Numerals.

Complete the diagrams.
Complete the function machines.

Roman Numerals

Reasoning and Problem Solving

Year 4 | Autumn Term | Week 1 to 4 - Number: Place Value

Round to the Nearest 10

Notes and Guidance

Children start to look at the position of a 2-digit number on a number line. They then apply their understanding to 3-digit numbers, focusing on the number of ones and rounding up or not.

Children must understand the importance of 5 and the idea that although it is in the middle of 0 and 10 , that by convention any number ending in 5 is always rounded up, to the nearest 10

Mathematical Talk

What is a multiple of 10 ?
Which multiples of 10 does \qquad sit between?

Which column do we look at when rounding to the nearest 10 ? What do we do if the number in that column is a 5 ?

Which number is being represented? Will we round it up or not? Why?

Varied Fluency

Which multiples of 10 do the numbers sit between?

\square Say whether each number on the number line is closer to 160 or 170?

Round 163,166 and 167 to the nearest 10
Complete the table:

Start number		Rounded to the nearest 10
100		

Round to the Nearest 10

Reasoning and Problem Solving

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

Round to the Nearest 100

Notes and Guidance

Children compare rounding to the nearest 10 (looking at the ones column) to rounding to the nearest 100 (looking at the tens column.)

Children use their knowledge of multiples of 100, to understand which two multiples of 100 a number sits between. This will help them to round 3 -digit numbers to the nearest 100

Mathematical Talk

What's the same/different about rounding to the nearest 10 and nearest 100 ? Which column do we need to look at when rounding to the nearest 100 ?

Why do numbers up to 49 round down to the nearest 100 and numbers 50 to 99 round up?

What would 49 round to, to the nearest 100 ?
Can the answer be 0 when rounding?

Varied Fluency

Which multiples of 100 do the numbers sit between?

\square Say whether each number on the number line is closer to 500 or 600

Round 535,556 and 568 to the nearest 100
Use the stem sentence: \qquad rounded to the nearest 100 is \qquad .

Complete the table:

Start number	Rounded to the nearest 100
4 0 0 5 0	
994	
XLV	

Round to the Nearest 100

Reasoning and Problem Solving

Always, Sometimes, Never

Explain your reasons for each statement.

- A number with a five in the tens column rounds up to the nearest hundred.
- A number with a five in the ones column rounds up to the nearest hundred.
- A number with a five in the hundreds column rounds up to the nearest hundred.

Always - a number with five in the tens column will be 50 or above so will always round up. Sometimes - a number with five in the ones column might have 0 to 4 in the tens column (do not round up) or 5 to 9 (round up).
Sometimes -a number with five in the hundreds column will also round up or down dependent on the number in the tens column.

When a whole number is rounded to the nearest 100, the answer is 200

When the same number is rounded to the nearest 10 , the answer is 250

What could the number be?
Is there more than one possibility?
Using the digit cards 0 to 9 , can you make whole numbers that fit the following rules? You can only use each digit once.

1. When rounded to the nearest 10 , 1 round to 20
2. When rounded to the nearest 10,1 round to 10
3. When rounded to the nearest 100,1 round to 700

245, 246, 247, 248
and 249 are all
possible answers.

To 20 , it could be
15 to 24

To 10, it could be 5 to 14

To 700, it could be 650 to 749

Use each digit
once: $5,24,679$ or
9, 17, 653 etc.

Count in 1,000 s

Notes and Guidance

Children look at four-digit numbers for the first time. They explore what a thousand is through concrete and pictorial representations, to recognise that 1,000 is made up of ten hundreds.

They count in multiples of 1,000 , representing numbers in numerals and words.

Mathematical Talk

How many hundreds are there in one thousand? How many hundreds make \qquad thousands?

How is counting in thousands similar to counting in 1s?
When counting in thousands, which is the only digit to change?
How many sweets would there be in \qquad jars?

Varied Fluency

\square

\qquad tens make \qquad hundred.
\qquad hundreds make \qquad thousand.
\square How many sweets are there altogether?

There are three jars of \qquad sweets. There are \qquad sweets altogether.

What numbers are represented below?

Count in 1,000s

Reasoning and Problem Solving

Always, Sometimes, Never

- When counting in hundreds, the ones digit changes.
- The thousands column changes every time you count in thousands.
- To count in thousands, we use 4 digit numbers.

```
Never, when
counting in
hundreds, the ones
digit always stays
the same.
Always, the thousands column
changes every time
you count in
thousands.
Sometimes, to count in thousands, we use 4-digit numbers.
```


Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

$1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s

Notes and Guidance

Children represent numbers to 9,999, using concrete resources on a place value grid. They understand that a fourdigit number is made up of $1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s .

Moving on from Base 10 blocks, children start to partition by using place value counters and digits.

Varied Fluency

\square Complete the sentences.

There are \qquad thousands,
\qquad hundreds, \qquad tens and \qquad ones. The number is \qquad .

\qquad
\qquad
\qquad $+$ \qquad $=$ \qquad

Mathematical Talk

Can you represent the number on a place value grid? How many thousands/hundreds/tens/ones are there?

How do you know you have formed the number correctly? What could you use to help you?

How is the value of zero represented on a place value grid or in a number?

Complete the part-whole model for the number represented.

What is the value of the underlined digit in each number?
6,983 9,021 789 6,570

Represent each of the numbers on a place value grid.

$1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s

Reasoning and Problem Solving

Create four 4-digit numbers to fit the following rules:

- The tens digit is 3
- The hundreds digit is two more than the ones digit
- The four digits have a total of 12

```
Possible answers:
3,432
5,331
1,533
7,230
```

| Use the clues to find the missing digits. | 4,098 |
| :--- | :--- | :--- |

The thousands and tens digit multiply together to make 36

The hundreds and tens digit have a digit total of 9

The ones digit is double the thousands digit.

The whole number has a digit total of 21

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

Partitioning

Notes and Guidance

Children explore how numbers can be partitioned in more than one way.

They need to understand that, for example, $5000+300+$ $20+9$ is equal to $4000+1300+10+19$ This is crucial to later work on adding and subtracting 4-digit numbers and children explore this explicitly.

Mathematical Talk

What number is being represented?
If we have 10 hundreds, can we exchange them for something?
If you know ten 100s are equal to 1,000 or ten 10 s are equal to 100 , how can you use this to make different exchanges?

Varied Fluency

Move the Base 10 around and make exchanges to represent the number in different ways.

\square Represent the number in two different ways in a part-whole model.

\square Eva describes a number. She says,
"My number has 4 thousands and 301 ones"
What is Eva's number?
Can you describe Eva's number in a different way?

Partitioning

Reasoning and Problem Solving

Which is the odd one out? $\begin{array}{l}3,500 \\ 3,500 ~ o n e s ~\end{array}$ $\begin{array}{l}\text { 2 thousands } \\ \text { and } 15 \text { hundreds }\end{array}$	35 tens is the odd one out because it does not make 3,500, it makes 350
Explain how you know.	
My number has five thousands, three hundreds and 64 ones.	They both have the same number because 53 hundreds is equal to 5 thousands and 3 hundreds. Jack and Amir both have 5,364
My number has fifty three hundreds, 6 tens and 4 ones.	
Who has the largest number? Explain.	

Some place value counters are hidden.	Possible answers: The total is six thousand, four hundred and thirty two.
Whe 1,000 counter and one 100 counter. hidden?	
Think of at least three solutions. 100 counters	
and ten 10	
counters.	
Eleven 100	
counters.	

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

Number Line to 10,000

Notes and Guidance

Children estimate, label and draw numbers on a number line to 10,000

They need to understand that it is possible to count forwards or backwards, in equal steps, from both sides.

Number lines should be shown with or without start and end numbers, or with numbers already placed on it.

Mathematical Talk

Which side of the number line did you start from? Why?
When estimating where a number should be placed, on a number line, what can help you?

Can you use your knowledge of place value to prove that you are correct?

When a number line has no values at the end, what strategies could you use to help you figure out the missing value? Could there be more than one answer?

Varied Fluency

Draw arrows to show where the numbers would be on the number line.

\square Estimate the value of each letter.

Estimate the value of A .

Number Line to 10,000

Reasoning and Problem Solving

If the number on the number line is	
9,200, what could the start and end	
numbers be?	
Find three different possible answers.	Possible answers:
$8,400-9,500$ $5,000-10,000$ $9,120-9,920$	

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

1,000 More or Less

Notes and Guidance

Children have explored finding 1,10 and 100 more or less, in Year 3. They now extend their learning by finding 1,000 more or less than a given number.

Show children that they can represent their answer in a number of ways, for example using place value counters, Base 10 or numerals.

Mathematical Talk

What is 1,000 more than/less than a number?
Which column changes when I find 1,000 more or less?
What happens when I subtract 1,000 from 9,209 ?
Can you show me two different ways of showing 1,000 more/less than e.g. pictures, place value charts, equipment.

Complete this sentence: I know that 1,000 more than \qquad is
\qquad because ... I can prove this by \qquad .

Varied Fluency

\square Fill in the missing values.

Complete the table.

1,000 less	Number	1,000 more	

\square
Find 1,000 more and 1,000 less than each number.

Use concrete resources to prove you are correct.

1,000 More or Less

Reasoning and Problem Solving

Year 4 | Autumn Term | Week 1 to 4 - Number: Place Value

Compare 4-digit Numbers

Notes and Guidance

Children compare 4-digit numbers using comparison language and symbols to determine/show which is greater and which is smaller.

Children should represent numbers using concrete manipulatives, draw them pictorially and write them using numerals.

Mathematical Talk

Which two numbers are being represented?
Do you start counting the thousands, hundreds, tens or ones first? Why?

Which column do you start comparing from? Why?
What strategy did you use to compare the two numbers? Is this the same or different to your partner?

How many answers can you find?

Varied Fluency

\square Complete the statements using $<,>$ or $=$

\square Circle the smallest amount in each pair.
Two thousand, three hundred and ninety seven 3,792

$$
6,000+400+50+6 \quad 6,455
$$

9 thousands, 2 hundreds and 6 ones
\square Complete the statements.

$$
1,985>
$$

$$
4,203<4,000+\ldots+4
$$

Compare 4-digit Numbers

Reasoning and Problem Solving

I am thinking of a number. It is greater	I have 13 numbers:
than 3,000, but smaller than 5,000	3,228
	3,282
The digits add up to 15	3,822
What could the number be?	4,560
	4,650
Write down as many possibilities as you	4,506
can.	4,605
The difference between the largest and	3,660
smallest digit is 6. How many numbers	3,606
do you now have?	3,147
	3,417
	3,471

Use digit cards 1 to 5 to complete the
comparisons:

$564 \square<\square 73 \square$	Possible answer:
$2641<5732$	
$2438>2335$	

You can only use each digit once.

Order Numbers

Notes and Guidance

Children explore ordering a set of numbers in ascending and descending order. They reinforce their understanding by using a variety of representations.

Children find the largest or smallest number from a set.

Mathematical Talk

Which number is the greatest? Which number is smallest? How do you know?

Why have you chosen to order the numbers this way?
What strategy did you use to solve this problem?

Varied Fluency

\square Fill in the circle using $<,>$ or $=$

Arrange them to make as many different 4-digit numbers as you can and put them in ascending order.
\square Rearrange four counters in the place value chart to make different numbers.

1000 s	100 s	10 s	1 s

Record all your numbers and write them in descending order.

Order Numbers

Reasoning and Problem Solving

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

Round to the Nearest 1,000

Notes and Guidance

Children build on their knowledge of rounding to the nearest 10 and 100, to round to the nearest thousand for the first time.

Children must understand which multiples of 1,000 a number sits between.

When rounding to the nearest 1,000 , children should look at the digits in the hundreds column.

Mathematical Talk

Which thousands numbers does \qquad sit between?

How can the number line help you to see which numbers round up/down?

Which place value column do we need to look at when we round the nearest 1,000 ?

Varied Fluency

Say whether each number on the number line is closer to 3,000 or 4,000

Round $3,280,3,591$ and 3,700 to the nearest thousand.
Round these numbers to the nearest 1,000

- Eight thousand and fifty-six
- 5 thousands, 5 hundreds, 5 tens and 5 ones

- LXXXII
\square Complete the table.

Start number	Rounded to the nearest 10	Rounded to the nearest 100	Rounded to the nearest 1,000
LOe0			
4,999			
LXXXII			

Round to the Nearest 1,000

Reasoning and Problem Solving

David's mum and dad are buying a car.
They look at the following cars:
Are all of the cars correctly advertised?
advertised. It should
be rounded up to
9,000

A number is rounded to the nearest	Possible answers:
thousand.	6,678
The answer is 7,000	7,423
	7,192
What could the original number have	6,991
been?	Greatest: 7,499
Give five possibilities.	Smallest: 6,500
What is the greatest number possible?	
What is the smallest number possible?	

Year $4 \mid$ Autumn Term | Week 1 to 4 - Number: Place Value

Count in 25s

Notes and Guidance

Children will count in 25 s to spot patterns. They use their knowledge of counting in 50s and 100s to become fluent in 25 s .

Children should recognise and use the number facts that there are two 25 s in 50 and four 25 s in 100 .

Mathematical Talk

What is the first/second number pattern counting up in? Can you notice a pattern as the numbers increase/decrease? Are any numbers in both of the number patterns? Why?

What digit do multiples of 25 end in?
What's the same and what's different when counting in 50s and $25 s$?

Varied Fluency

Look at the number patterns.
What do you notice?

25	50	75	100	125	150

50	100	150	200	250	300

\square Complete the number tracks

25		75		125	150				250

	725	700		650		600			

\square Circle the mistake in each sequence.

2,275	2,300	2,325	2,350	$2,400, \ldots$
1,000	975	925	900	$875 \ldots$

Count in 25s

Reasoning and Problem Solving

Whitney is counting in 25 s and 1,000 s.
She says:

- Multiples of 1,000 are also multiples of 25
- Multiples of 25 are therefore multiples of 1,000

Do you agree with Whitney?
Explain why.

Ron is counting down in 25 s from 790.
Will he say 725 ?
Explain your answer.

I don't agree.
Multiples of 1,000
are multiples of 25
because 25 goes into 1,000 exactly, but not all multiples of 25 are multiples of 1,000 e.g. 1,075

No, he will not say 725 because:

790, 765, 740, 715, 690, 665, ...

Two race tracks have been split into 25 m intervals.

Race track A

Race track B

What errors have been made?

Possible answers:

Race track A has miscounted when adding 25 m to 100 m . After this they have continued to count in 25 s correctly from 150

Race track B has miscounted when adding 25 m to 150 m . They have then added 25 m from this point.

Negative Numbers

Notes and Guidance

Children recognise that there are numbers below zero. It is essential that this concept is linked to real life situations such as temperature, water depth etc.
Children should be able to count back through zero using correct mathematical language of "negative four" rather than "minus four" for example. This counting can be supported through the use of number squares, number lines or other visual aids.

Mathematical Talk

What number is missing next to -5 ? Can you count up to fill in the missing numbers?

Can you use the words positive and negative in a sentence to describe numbers?

What do you notice about positive and negative numbers on the number line? Can you see any patterns?

Is -1 degrees warmer or colder than -4 degrees?

Varied Fluency

\square Complete the number lines

\square Fill in the missing temperatures on the thermometers.

\square Dexter is counting backwards out loud.
He says,
"Two, one, negative one, negative two, negative three ..."
What mistake has Dexter made?

Negative Numbers

Reasoning and Problem Solving

Can you spot the mistake in these number sequences?
a) $2,0,0,-2,-4$
b) $1,-2,-4,-6,-8$
c) $5,0,-5,-10,-20$

Explain how you found the mistake and convince me you are correct.
a) \mathbf{O} is incorrect as it is written twice.
b) 1 is incorrect.

The sequence has a difference of 2 each time, so the first number should be 2
c) -20 is
incorrect. The
sequence is
decreasing by 5 , so
the final number
should be -15

Teddy counted down in 3 s until he reached -18	-6
	Ensure the first
He started at 21, what was the tenth	number said is 21
number he said?	$21,18,15,12,9,6,3$,
	$0,-3,-6, \ldots$

| Teddy counted down in 3 s until he | -6 |
| :--- | :--- | :--- |

Ensure the first
number said is 21
$0,-3,-6, \ldots$

White
 Autumn - Block 2
 Addition \& Subtraction

Overview

Small Steps

NC Objectives

Add and subtract $1 \mathrm{~s}, 10 \mathrm{~s}, 100$ s and 1,000 s
Add two 4-digit numbers - no exchange
Add two 4-digit numbers - one exchange
Add two 4-digit numbers - more than one exchange
Subtract two 4-digit numbers - no exchange
Subtract two 4-digit numbers - one exchange
Subtract two 4-digit numbers - more than one exchange
Efficient subtraction
Estimate answers
Checking strategies

Year $4 \mid$ Autumn Term | Week 5 to 7 - Number: Addition \& Subtraction

$1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}, 1,000 \mathrm{~s}$

Notes and Guidance

Children build on prior learning of adding and subtracting hundreds, tens and ones. They are introduced to adding and subtracting thousands.

Children should use concrete representations (Base 10, place value counters etc.) before moving to abstract and mental methods.

Mathematical Talk

Can you represent the numbers using Base 10 and place value counters? What's the same about the representations? What's different?

If we are adding tens, are the digits in the tens column the only ones that change? Do the ones/hundreds/thousands ever change?

Varied Fluency

The number being represented is \qquad .

Add 3 thousands to the number. What do you have now?
Add 3 hundreds to the number. What do you have now?
Subtract 3 tens from the number. What do you have now?
Add 5 ones to the number. What do you have now?
Here is a number.

Thousands	Hundreds	Tens	Ones
5	3	8	2

Add 3 thousands to the number.
Subtract 4 thousands from the answer.
Subtract 2 ones.
Add 5 tens.
What number do you have now?

$1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}, 1,000 \mathrm{~s}$

Reasoning and Problem Solving

| Mo says, |
| :--- | :--- |
| When I add hundreds |
| to a number, only the |
| hundreds column will |
| change. |\quad| Mo is incorrect |
| :--- |
| because when you |
| add hundreds to a |
| number and end |
| up with more than |
| ten hundreds, you |
| have to make an |
| exchange which |
| also affects the |
| thousands column. |

Add Two 4-digit Numbers (1)

Notes and Guidance

Children use their understanding of addition of 3-digit numbers to add two 4-digit numbers with no exchange.

They use concrete equipment and a place value grid to support their understanding alongside column addition.

Mathematical Talk

How many ones are there altogether? Can we make an exchange? Why? (Repeat questions for other columns)

Is it more difficult to add 3-digit or 4-digit numbers without exchanging? Why?

How can you find the missing numbers? Do you need to add or subtract?

Varied Fluency

Use counters and a place value grid to calculate $242+213$
\square
Use counters and a place value grid to calculate 3,242 + 2,213

$1,000 \mathrm{~s}$	100 s	10 s	1 l
1000	100	10	
1000	1000	1	

Now calculate $3,242+213$ in the same way. What is the same and what is different?
\square Work out the missing numbers.

	Th	H	T	O
	4	-	6	-
+	2	5	-	1
	-	7	8	9

Add Two 4-digit Numbers (1)

Reasoning and Problem Solving

Rosie adds 2 numbers together that total 4,444	
	$\begin{aligned} & 2,222+2,222 \\ & 2,244+2,200 \\ & 2,224+2,220 \\ & 2,442+2,002 \\ & 2,242+2,202 \\ & 2,424+2,020 \\ & 2,422+2,022 \\ & 2,444+2,000 \end{aligned}$
What could the numbers be? Prove it. How many ways can you find?	There are more possible pairs. This includes 0 as an even number. Discussion could be had around whether 0 is odd or even and why.

$\left.$| Two children completed the following |
| :--- |
| calculation: | | The actual answer |
| :--- |
| is 1,579 |
| Dora's mistake was |
| a miscalculation |
| for the 10s |
| column, adding 30 |
| and 40 to get 80 |
| rather |
| than 70 |
| Alex's mistake was |
| a place value error, |
| placing the 3 |
| hundred in the |
| thousands column |
| and following the |
| calculation |
| through incorrectly. | \right\rvert\,

Add Two 4-digit Numbers (2)

Notes and Guidance

Children add two 4-digit numbers with one exchange. They use a place value grid to support understanding alongside column addition.

They explore exchanges as they occur in different place value columns and look for similarities/differences.

Mathematical Talk

How many ones do we have altogether? Can we make an exchange? Why? How many ones do we exchange for one ten? Do we have any ones remaining? (Repeat for other columns.)

Why is it important to line up the digits in the correct column when adding numbers with different amounts of digits?

Which columns are affected if there are more than ten tens

Varied Fluency

\square
Rosie uses counters to find the total of 3,356 and 2,435

Use Rosie's method to calculate:

$$
3,356+2,437 \quad 3,356+2,473 \quad 3,356+2,743
$$

\square Dexter buys a laptop costing $£ 1,265$ and a mobile phone costing £492
How much do the laptop and the mobile phone cost altogether?
Complete the bar models.

3,535	2,634

3,264	1,655

Add Two 4-digit Numbers (2)

Reasoning and Problem Solving

What is the missing 4-digit number?

	Th	H	T	O
	-	-	-	-
+	6	3	9	5
	8	9	4	9

2,554

Annie, Mo and Alex are working out the solution to the calculation $6,374+2,823$
Annie's Strategy
$6,000+2,000=8,000$
$300+800=110$
$70+20=90$
$4+3=7$
$8,000+110+90+7=8,207$
Mo's Strategy

6	3	7	4
+2	8	2	3
8	1	9	7

Who is correct?

Alex's Strategy

6	3	7	4
+2	8	2	3
			7
		9	0
1	1	0	0
8	0	0	0
9	1	9	7

Alex is correct with 9,197

Annie has
miscalculated
$300+800$,
forgetting to
exchange a ten hundreds to make a thousand
(showing 11
tens instead of 11
hundreds).
Mo has forgotten both to show and to add on the exchanged thousand.

Add Two 4-digit Numbers (3)

Notes and Guidance

Building on adding two 4-digit numbers with one exchange, children explore multiple exchanges within an addition.

Ensure children continue to use equipment alongside the written method to help secure understanding of why exchanges take place and how we record them.

Mathematical Talk

How many ones do we have altogether? Can we make an exchange? Why? How many ones do we exchange for one ten? How many ones are remaining? (Repeat for each column.)

Why do you have to add the digits from the right to the left, starting with the smallest place value column? Would the answer be the same if you went left to right?

What is different about the total of 4,844 and 2,156 ? Can you think of two other numbers where this would happen?

Varied Fluency

Use counters and a place value grid to calculate:

Find the total of 4,844 and 2,156

\square Use $<,>$ or $=$ to make the statements correct.

3,456 + 789	\bigcirc	1,810 $+2,436$
$2,829+1,901$	\bigcirc	$2,312+2,418$
$7,542+1,858$		$902+8,496$
1,818 $+1,999$	\bigcirc	3,110 + 707

Add Two 4-digit Numbers (3)

Reasoning and Problem Solving

Jack says, When I add two numbers together I will only ever make up to one exchange in each column. Do you agree? Explain your reasoning.	Jack is correct. When adding any two numbers together, the maximum value in any given column will be 18 (e.g. 18 ones, 18 tens, 18 hundreds). This means that only one exchange can occur in each place value column. Children may explore what happens when more than two numbers are added together.

Complete:

	Th	H	T	O
	6	$?$	$?$	8
+	$?$	$?$	8	$?$
	9	3	2	5

Mo says that there is more than one possible answer for the missing numbers in the hundreds column.
Is he correct?
Explain your answer.

The solution shows the missing numbers for the ones, tens and thousands columns.

$$
6, \ldots 38+2, \ldots 87
$$

Mo is correct. The missing numbers in the hundreds column must total 1,200 (the additional 100 has been exchanged).

Possible answers include:
$6,338+2,987$
$6,438+2,887$

Subtract Two 4-digit Numbers (1)

Notes and Guidance

Building on their experiences in Year 3, children use their knowledge of subtracting using the formal column method to subtract two 4-digit numbers.

Children will focus on calculations with no exchanges, concentrating on the value of each digit.

Mathematical Talk

Do you need to make both numbers when you are subtracting with counters? Why?

Why is it important to always subtract the smallest place value column first?

How are your bar models different for the two problems? Can you use the written method to calculate the missing numbers?

Varied Fluency

Eva uses place value counters to calculate 3,454-1,224

	Th	H	T	O
	3	4	5	4
-	1	2	2	4
	2	2	3	0

Use Eva's method to calculate:

$$
\begin{array}{ll}
2,348-235=_ & -\quad=4,572-2,341 \\
6,582-582=_ & -\quad=7,262-7,151
\end{array}
$$

\square Use a bar model to represent each problem.
There are 3,597 boys and girls in a school.
2,182 are boys. How many are girls?
Car A travels 7,653 miles per year.
Car B travels 5,612 miles per year.
How much further does Car A travel than Car B per year?

Subtract Two 4-digit Numbers (1)

Reasoning and Problem Solving

Eva is performing a column subtraction

with two four digit numbers. | $9998-1100=8898$ |
| :--- |
| $9998-1010=8988$ |
| $9998-1001=8997$ |
| $9998-2000=7998$ |
| $9989-1100=8889$ |
| $9989-1010=8979$ |
| $9989-1001=8988$ |
| $9989-2000=7989$ |
| $9899-1100=8799$ |
| $9899-1010=8889$ |
| $9899-1001=8898$ |
| $9899-2000=7899$ |
| The larger number has a digit total of 35 |
| The smaller number has a digit total of 2 |
| Use cards to help you find the numbers. $1100=7899$ |
| $8999-1010=7889$ |
| $8999-1001=7998$ |
| $8999-2000=6999$ |

There are counters to the value of 3,470 on the table but some have been covered by the splat.

What is the total of the counters covered? How many different ways can you make the missing total?

```
3470-1260= 2210
```

Possible answers include:

- two 1000s, two 100s and one 10
- twenty-two 100 s and one 10
- twenty-two 100s and ten 1s

Subtract Two 4-digit Numbers (2)

Notes and Guidance

Building on their experiences in Year 3, children use their knowledge of subtracting using the formal column method to subtract two 4-digit numbers.

Children explore subtractions where there is one exchange. They use place value counters to model the exchange and match this with the written column method.

Mathematical Talk

When do we need to exchange in a subtraction?
How do we indicate the exchange on the written method?
How many bars are you going to use in your bar model?
Can you find out how many tokens Mo has?
Can you find out how many tokens they have altogether?
Can you create your own scenario for a friend to represent?

Varied Fluency

Dexter is using place value counters to calculate $5,643-4,316$

	Th	H	T	O
	5	6	${ }^{4}$	1_{3}
-	4	3	1	6
	1	3	2	7

Use Dexter's method to calculate:

$$
4,721-3,605=\quad 4,721-3,650=4,172-3,650=
$$

Dora and Mo are collecting book tokens.
Dora has collected 1,452 tokens.
Mo has collected 621 tokens fewer than Dora.
Represent this scenario on a bar model.
What can you find out?

Subtract Two 4-digit Numbers (2)

Reasoning and Problem Solving

Find the missing numbers that could go into the spaces.

Give reasons for your answers.

$$
\ldots-1,345=4 _6
$$

What is the greatest number that could go in the first space?

What is the smallest?

How many possible answers could you have?

What is the pattern between the numbers?

What method did you use?

Possible answers:

1,751 and 0
1,761 and 10
1,771 and 20
1,781 and 30
1,791 and 40
1,801 and 50
1,811 and 60
1,821 and 70
1,831 and 80
1,841 and 90
1,841 is the
greatest
1,751 is the
smallest.

There are 10
possible answers.
Both numbers increase by 10

Subtract Two 4-digit Numbers (3)

Notes and Guidance

Children explore whathappens when a subtraction has more than one exchange. They can continue to use manipulatives to support their understanding. Some children may feel confident calculating with a written method.
Encourage children to continue to explain their working to ensure they have a secure understanding of exchange within 4-digits numbers

Mathematical Talk

When do we need to exchange within a column subtraction?
What happens if there is a zero in the next column? How do we exchange?

Can you use place value counters or Base 10 to support your understanding?
How can you find the missing 4-digit number? Are you going to add or subtract?

Varied Fluency

Use place value counters and the column method to calculate:

$$
\begin{array}{lll}
5,783-844 & 6,737-759 & 8,252-6,560 \\
1,205-398 & 2,037-889 & 2,037-1,589
\end{array}
$$

\square A shop has 8,435 magazines.
367 are sold in the morning and 579 are sold in the afternoon.
How many magazines are left?

8,435		
367	579	

There are \qquad magazines left.

Find the missing 4-digit number.

	Th	H	T	O
	$?$	$?$	$?$	$?$
+	4	6	7	8
	7	4	3	1

Subtract Two 4-digit Numbers (3)

Reasoning and Problem Solving

Amir and Tommy solve a problem.	Tommy is correct. When I subtract 546 from 3,232 my answer is 2,714
Whor is incorrect	

There were 2,114 visitors to the museum on Saturday.
650 more people visited the museum on Saturday than on Sunday.

Altogether how many people visited the museum over the two days?

What do you need to do first to solve this problem?

First you need to find the number of visitors on Sunday which is
$2,114-650=$ 1,464

Then you need to add Saturday's visitors to that number to solve the problem. $1,464+2,114=$ 3,578

Efficient Subtraction

Notes and Guidance

Children use their understanding of column subtraction and mental methods to find the most efficient methods of subtraction.

They compare the different methods of subtraction and discuss whether they would partition, take away or find the difference.

Varied Fluency

Ron, Rosie and Dexter are calculating 7,000-3,582
Here are their methods:

Ron | | Th | H | T | 0 |
| :---: | :---: | :---: | :---: | :---: |
| | ${ }^{6} \boldsymbol{X}$ | ${ }^{9} Q$ | ${ }^{9} Q$ | ${ }^{1} 0$ |
| - | 3 | 5 | 8 | 2 |
| | 3 | 4 | 1 | 8 |

Rosie

	Th	H	T	O
	6	9	9	9
-	3	5	8	1
	3	4	1	8

Dexter

Mathematical Talk

Is the column method always the most efficient method? When we find the difference, what happens if we take one off each number? Is the difference the same? How does this help us when subtracting large numbers?
When is it more efficient to count on rather than use the column method?
Can you represent your subtraction in a part-whole model or a bar model?

Whose method is most efficient?
Use the different methods to calculate 4,000-2,831
\square
Find the missing numbers.
What methods did you use?

3,465	
2,980	$?$

Efficient Subtraction

Reasoning and Problem Solving

Amir has $£ 1,000$	Children should use the three methods demonstrated in the varied fluency section to get an answer of $£ 545$
He buys a scooter for $£ 345$ and a skateboard for $£ 110$	
How much money does he have left? Show 3 different methods of finding the answer.	
Explain how you completed each one.	
Which is the most effective method?	

Year $4 \mid$ Autumn Term | Week 5 to 7 - Number: Addition \& Subtraction

Estimate Answers

Notes and Guidance

In this step, children use their knowledge of rounding to estimate answers for calculations and word problems.

They build on their understanding of near numbers in Year 3 to make sensibleestimates.

Mathematical Talk

When in real life would we use an estimate?

Why should an estimate be quick?
Why have you rounded to the nearest $10 / 100 / 1,000$?

Varied Fluency

Match the calculations with a good estimate.

$$
3,000+6,000
$$

$$
2,985+6,325
$$

$3,541+1,179$
$350+1,200$

$$
2,135+6,292
$$

```
2,000 + 6,000
```

\square Alex is estimating the answer to $3,625+4,277$
She rounds the numbers to the nearest thousand, hundred and ten to give different estimates. Complete her working.

Original calculation: $3,625+4,277=$ \qquad
Round to nearest thousands: $4,000+4,000=$ \qquad
Round to nearest hundreds: $3,600+\ldots=$ \qquad
Round to nearest tens: \qquad $+$ \qquad $=$ \qquad
\square Decide whether to round to the nearest 10,100 or 1,000 and estimate the answers to the calculations.
$4,623+3,421$
$9,732-6,489$
8,934-1,187

Estimate Answers

Reasoning and Problem Solving

Game

The aim of the game is to get a number as close to 5,000 as possible.

Each child rolls a 1-6 die and chooses where to put the number on their grid.

Once they have each filled their grid, they add up their totals to see who is the closest.

	Th	H	T	O
	$?$	$?$	$?$	$?$
+	$?$	$?$	$?$	$?$

The aim of the game can be changed, i.e. make the
smallest/largest possible total etc.
Dice with more
faces could also be used.

The estimated answer to a calculation is 3,400
The numbers in the calculation were rounded to the nearest 100 to find an estimate.
What could the numbers be in the original calculation?

Use the number cards and + or - to make three calculations with an estimated answer of 2,500

1,295
1,120
4,002
1,489
3,812

Possible answers include
$2,343+1,089=$
$4,730-1,304=$

```
3,812-1,295
(3,800-1,300 =
2,500)
4,002-1,489
(4,000-1,500=
2,500)
1,449 + 1,120
(1,400 + 1,100 =
2,500)
```


Checking Strategies

Notes and Guidance

Children explore ways of checking to seeif an answer is correct by using inverse operations.

Checking using inverse is to be encouraged so that children are using a different method and not just potentially repeating an error, for example, if they add in a differentorder.

Mathematical Talk

How can you tell if your answer is sensible?
What is the inverse of addition?
What is the inverse of subtraction?

Varied Fluency

$$
2,300+4,560=6,860
$$

Use a subtraction to check the answer to the addition.
Is there more than one subtraction we can do to check the answer?
\square If we know $3,450+4,520=7,970$, what other addition and subtraction facts do weknow?
\qquad
\qquad $=$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Does the equal sign have to go at the end? Could we write an addition or subtraction with the equals sign atthe beginning? How many more facts can you write now?

Complete the pyramid.
Which calculations do you use to find the missing numbers?
Which strategies do you use to check your calculations?

Checking Strategies

Reasoning and Problem Solving

Here is a number sentence. $350+278+250$ Add the numbers in different orders to find the answer. Is one order of adding easier? Why? Create a rule when adding more than one number of what to look for in a number.	It is easier to add 350 and 250 to make 600 and then add on 278 to make 878. We can look for making number bonds to 10, 100 or 1,000 to make a calculation easier.
I completed an addition and then used the inverse to check my calculation. When I checked my calculation, the answer was 3,800 One of the other numbers was 5,200 What could the calculation be? $\begin{aligned} & \sim_{+}^{+}= \\ & --\ldots=3,800 \end{aligned}$	Possible answers: $\begin{aligned} & 5,200-1,400= \\ & 3,800 \\ & 9,000-5,200= \\ & 3,800 \end{aligned}$

In the number square below, each horizontal row and vertical column adds up to 1,200 Find the missing numbers. Is there more than one option?
\qquad897 832

White
 Autumn - Block 3
 Length \& Perimeter

Overview

Small Steps

NC Objectives

Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.

Convert between different units of measure [for example, kilometre to metre].

Year 4 | Autumn Term | Week 8 - Measurement: Length \& Perimeter

Kilometres

Notes and Guidance

Varied Fluency

Children multiply and divide by 1,000 to convert between kilometres and metres.
They apply their understanding of adding and subtracting with four-digit numbers to find two lengths that add up to a whole number of kilometres.
Children find fractions of kilometres, using their Year 3 knowledge of finding fractions of amounts. Encourage children to use bar models to support their understanding.

Complete the statements.
$3,000 \mathrm{~m}=$ \qquad km
$8 \mathrm{~km}=$ \qquad m
$5 \mathrm{~km}=$ \qquad m
$3 \mathrm{~km}+6 \mathrm{~km}=$ \qquad m
$500 \mathrm{~m}=$ \qquad km
$250 \mathrm{~m}=$ \qquad km 9,500 m = \qquad km
$4,500 \mathrm{~m}-2,000 \mathrm{~m}=$ \qquad km
\square Complete the bar models.

Mathematical Talk

Can you research different athletic running races? What different distances are the races? Can you convert the distances from metres into kilometres? Which other sports have races over distances measured in metres or kilometres? If 10 children ran 100 metres each, how far would they run altogether? Can we go outside and do this? How long do you think it will take to run 1 kilometre? How can we calculate half a kilometre? Can you find other

3 kilometres	
	1,800 metres

$2,870 \mathrm{~mm}$	$4,130 \mathrm{~m}$

Use $<,>$ or $=$ to make the statements correct.
500 m
7 km

5 km | $\frac{1}{2} \mathrm{~km}$ |
| :--- |
| 800 m |
| 500 m |

Kilometres

Reasoning and Problem Solving

Dexter and Rosie walk 15 kilometres altogether for charity. Rosie walks double the distance that Dexter walks. How far does Dexter walk?	Rosie walks 10 km.
	Dexter walks 5 km.
Dexter and Rosie each raise $£ 1$ for every 500 metres they walk. How much money do they each make?	Dexter raises $£ 10$

Year 4 | Autumn Term | Week 8 - Measurement: Length \& Perimeter

Perimeter on a Grid

Notes and Guidance

Children calculate the perimeter of rectilinear shapes by counting squares on a grid. Rectilinear shapes are shapes where all the sides meet at right angles.

Encourage children to label the length of each side and to mark off each side as they add the lengths together. Ensure that children are given centimetre squared paper to draw the shapes on to support their calculation of the perimeter.

Mathematical Talk

What is perimeter? How can we find the perimeter of a shape?
What do you think rectilinear means? Which part of the word sounds familiar?

If a rectangle has a perimeter of 16 cm , could one of the sides measure 14 cm ? 8 cm ? 7 cm ?

Varied Fluency

Calculate the perimeter of the shapes.

Using squared paper, draw two rectilinear shapes, each with a perimeter of 28 cm .
What is the longest side in each shape? What is the shortest side in each shape?
\square
Draw each shape on centimetre square paper.

Order the shapes from smallest to largest perimeter.

Perimeter on a Grid

Reasoning and Problem Solving

Which of these shapes has the longest
perimeter?

Explore other letters which could be
drawn as rectilinear shapes.
perimeter, it is 18
compared to 16
for T.
Open ended.
Letters which
could be drawn
include:
B C D F I J L

perimeter.

Ca P order of shortest to longest make a word? | Letters with |
| :--- |
| diagonal lines |
| would be omitted. |
| If heights of letters |
| are kept the same, |
| I or L could be the |
| shortest. |

You have 10 paving stones to design a patio. The stones are one metre square.

The stones must be joined to each other so that at least one edge is joined corner to corner.

Use squared paper to show which design would give the longest perimeter and which would give the shortest.

The shortest perimeter would be 14 m in a 2×5 arrangement or 3×3 square with one added on.

The longest would be 22 m .

Year 4 | Autumn Term | Week 8 - Measurement: Length \& Perimeter

Perimeter of a Rectangle

Notes and Guidance

Children calculate the perimeter of rectangles (including squares) that are not on a squared grid. When given the length and width, children explore different approaches of finding the perimeter: adding all the sides together, and adding the length and width together then multiplying by 2
Children use their understanding of perimeter to calculate missing lengths and to investigate the possible perimeters of squares and rectangles.

Mathematical Talk

If I know the length and width of a rectangle, how can I calculate the perimeter? Can you tell me 2 different ways? Which way do you find the most efficient?

If I know the perimeter of a shape and the length of one of the sides, how can I calculate the length of the missing side?

Can a rectangle where the length and width are integers, ever have an odd perimeter? Why?

Varied Fluency

Calculate the perimeter of the rectangles.

4 cm
$\ldots \quad \mathrm{cm}+$ \qquad $\mathrm{cm}+$ \qquad $\mathrm{cm}+$ \qquad $\mathrm{cm}=$ \qquad cm

Eva is finding the perimeter of the rectangle.

$$
5 \mathrm{~cm}+10 \mathrm{~cm}=15 \mathrm{~cm}
$$

$$
15 \mathrm{~cm} \times 2=30 \mathrm{~cm}
$$

Use Eva's method to find the perimeter of the rectangles.

Perimeter of a Rectangle

Reasoning and Problem Solving

The width of a rectangle is 2 metres less than the length. The perimeter of the rectangle is between 20 m and 30 m . What could the dimensions of the rectangle be? Draw all the rectangles that fit these rules. Use $1 \mathrm{~cm}=1 \mathrm{~m}$.	If the perimeter is: 20 m Length $=6 \mathrm{~m}$ Width $=4 \mathrm{~m}$ 24 m Length $=7 \mathrm{~m}$ Width $=5 \mathrm{~m}$ 28 m Length $=8 \mathrm{~m}$ Width $=6 \mathrm{~m}$
Each of the shapes have a perimeter of 16 cm . Calculate the lengths of the missing sides.	$\begin{aligned} & 4 \mathrm{~cm} \\ & 6 \mathrm{~cm} \end{aligned}$

Always, Sometimes, Never

When all the sides of a rectangle are odd numbers, the perimeter is even.
Prove it.

Here is a square. Each of the sides is a
whole number of metres.

Which of these lengths could be the perimeter of the shape? $24 \mathrm{~m}, 34 \mathrm{~m}, 44 \mathrm{~m}, 54 \mathrm{~m}, 64 \mathrm{~m}, 74 \mathrm{~m}$

Why could the other values not be the perimeter?

Always because when adding an odd and an odd they always equal an even number.

24 cm
Sides $=6 \mathrm{~cm}$
44 cm
Sides $=11 \mathrm{~cm}$
64 cm
Sides $=16 \mathrm{~cm}$
They are not
divisible by 4

Year 4 | Autumn Term | Week 8 - Measurement: Length \& Perimeter

Perimeter of Rectilinear Shapes

Notes and Guidance

Children will begin to calculate perimeter of rectilinear shapes without using squared paper. They use addition and subtraction to calculate the missing sides. Teachers may use part-whole models to support the understanding of how to calculate missing sides.
Encourage children to continue to label each side of the shape and to mark off each side as they calculate the whole perimeter.

Mathematical Talk

Why are opposite sides important when calculating the perimeter of rectilinear shapes?

If one side is 10 cm long, and the opposite side is made up of two lengths, one of which is 3 cm , how do you know what the missing length is? Can you show this on a part-whole model?

If a rectilinear shape has a perimeter of 24 cm , what is the greatest number of sides it could have? What is the least number of sides it could have?

Varied Fluency

Find the perimeter of the shapes.

\square The shape is made from 3 identical rectangles.
Calculate the perimeter of the shape.

How many different rectilinear shapes can you draw with a perimeter of 24 cm ? How many sides do they each have? What is the longest side? What is the shortest side?

Year $4 \mid$ Autumn Term | Week 8 - Measurement: Length \& Perimeter

Perimeter of Rectilinear Shapes

Reasoning and Problem Solving

Here is a rectilinear shape. All the sides are the same length and are a whole number of centimetres.

Which of these lengths could be the perimeter of the shape?
$48 \mathrm{~cm}, 36 \mathrm{~cm}, 80 \mathrm{~cm}, 120 \mathrm{~cm}, 66 \mathrm{~cm}$

Can you think of any other answers which could be correct?
$48 \mathrm{~cm}, 36 \mathrm{~cm}$ or 120 cm as there are 12 sides and these numbers are all multiples of 12

Any other answers suggested are correct if they are a multiple of 12

Amir has some rectangles all the same size.

He makes this shape using his rectangles.
What is the perimeter?

He makes another shape using the same rectangles. Calculate the perimeter of this shape.

54 cm

54 cm

White
 Autumn - Block 4
 Multiplication \& Division

Overview

Small Steps

NC Objectives

Multiply by 10
Multiply by 100
Divide by 10
Divide by 100
Multiply by 1 and 0
Divide by 1 and itself
Multiply and divide by 6
6 times table and division facts
Multiply and divide by 9
9 times table and division facts
Multiply and divide by 7
7 times table and division facts

Recall and use multiplication and division facts for multiplication tables up to 12×12

Count in multiples of 6, 7, 9, 25 and 1,000

Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.

Solve problems involving

 multiplying and adding, including using the distributive law to multiply two-digit numbers by one-digit, integer scaling problems and harder correspondence problems such as n_{-}objects are connected to m objects.
Multiply by 10

Notes and Guidance

Varied Fluency

Children need to be able to visualise and understand making a number ten times bigger and that 'ten times bigger' is the same as 'multiply by 10 '

The language of 'ten lots of' is vital to use in this step. The understanding of the commutative law is essential because children need to see calculations such as 10×3 and 3×10 as equal.

Mathematical Talk

Can you represent these calculations with concrete objects or a drawing?

Can you explain what you did to a partner?
What do you notice when multiplying by 10 ? Does it always work?

What's the same and what's different about 5 buses with 10 passengers on each and 10 buses with 5 passengers on each?

$$
10 \times 3
$$

\square 5 buses have ten passengers.

8 pots each have ten pencils.

10 chickens lay 5 eggs each.

Write the calculation shown by the place value counters.

Each row has \qquad tens and \qquad ones.

Each row has a value of \qquad .

There are \qquad rows.

The calculation is \qquad \times \qquad $=$ \qquad .

Use place value counters to calculate:

$$
4 \times 10
$$

$$
12 \times 10
$$

Match each statement to the correct bar model.

10	10	10	10	10

5	5	5	5	5	5	5	5	5	5

10	10	10	10	10	10	10	10

Multiply by 10

Reasoning and Problem Solving

$\left.\begin{array}{|l|l|}\hline \text { Always, Sometimes, Never } & \begin{array}{l}\text { Always. } \\ \text { If you write a whole number in a place } \\ \text { value grid and multiply it by 10, all the } \\ \text { digits move one column to the left. }\end{array}\end{array} \begin{array}{l}\text { Discuss the need } \\ \text { for a placeholder } \\ \text { after the new } \\ \text { rightmost digit. }\end{array}\right\}$

Annie has multiplied a whole number by	45×10
10	46×10
Her answer is between 440 and 540	47×10
What could her original calculation be?	48×10
How many possibilities can you find?	50×10
	51×10
	52×10
	53×10
	(or the above
	calculations
	written as
	10×45 etc.).

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply by 100

Notes and Guidance

Varied Fluency

Children build on multiplying by 10 and see links between multiplying by 10 and multiplying by 100

Use place value counters and Base 10 to explore what is happening to the value of the digits in the calculation and encourage children to see a rule so they can begin to move away from concrete representations.

Mathematical Talk

How do the Base 10 help us to show multiplying by 100 ?
Can you think of a time when you would need to multiply by 100?

Will you produce a greater number if you multiply by 100 rather than 10 ? Why?

Can you use multiplying by 10 to help you multiply by 100 ? Explain why.
75×100
39×100
460×10
$39 \times 10 \times 10$
100×47

Multiply by 100

Reasoning and Problem Solving

The part-whole model does not represent multiplying by 100

Part-whole models
show addition (the aggregation structure) and subtraction (the partitioning structure), so if the whole is 300 and there are two parts, the parts added together should total 300 (e.g. 100 and 200 , or 297 and 3). If the parts are 100 and 3, the whole should be 103.

To show multiplying 3 by 100 as a partwhole model, there would need to be 100 parts each with 3 in.

The perimeter of the rectangle is 26 m . Find the length of the missing side.

Give your answer in cm.

The missing side length is 6 m so in cm it will be:
$6 \times 100=600$
The missing length is 600 cm .

Divide by 10

Notes and Guidance

Exploring questions with whole number answers only, children divide by 10
They should use concrete manipulatives and place value charts to see the link between dividing by 10 and the position of the digits before and after the calculation.
Using concrete resources, children should begin to understand the relationship between multiplying and dividing by 10 as the inverse of the other.

Mathematical Talk

What has happened to the value of the digits?
Can you represent the calculation using manipulatives?
Why do we need to exchange tens for ones?
When dividing using a place value chart, in which direction do the digits move?

Varied Fluency

Use place value counters to show the steps to divide 30 by 10

Can you use the same steps to divide a 3-digit number like 210 by 10?

Use Base 10 to divide 140 by 10 Explain what you have done.

\square Ten friends empty a money box. They share the money equally between them. How much would they have each if the box contained:

- $20 £ 1$ coins?
- £120
- £24?

After emptying the box and sharing the contents equally, each friend has 90 p .
How much money was in the box?

Divide by 10

Reasoning and Problem Solving

Four children are in a race. The numbers
on their vests are:

| 350 | Alex -53 |
| :--- | :--- | :--- |
| Jack - 350 | |

Dora - 35
Use the clues to match each vest number
to a child.

- Jack's number is ten times smaller
than Mo's.
Alex's number is not ten times
smaller than Jack's or Dora's or Mo's.
Dora's number is ten times smaller
than Jack's.

While in Wonderland, Alice drank a potion and everything shrank. All the items around her became ten times smaller! Are these measurements correct?

Item	Original measurement	After shrinking
Height of a door	220 cm	$2,200 \mathrm{~cm}$
Her height	160 cm	16 cm
Length of a book	340 mm	43 mm
Height of a mug	220 mm	$?$

Can you fill in the missing measurement?
Can you explain what Alice did wrong?
Write a calculation to help you explain each item.

Height of a door

Incorrect - Alice
has multiplied by 10.

Her height Correct

Length of a book Incorrect - Alice has swapped the order of the digits. When dividing by 10 the order of the digits never changes.

Height of a mug

22 mm .

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Divide by 100

Notes and Guidance

Children divide by 100 with whole number answers.

Money and measure is a good real-life context for this, as coins can be used for the concrete stage.

Mathematical Talk

How can you use dividing by 10 to help you divide by $100 ?$
How are multiplying and dividing by 100 related?

Write a multiplication and division fact family using 100 as one of the numbers.

Varied Fluency

D
Is it possible for $£ 1$ to be shared equally between 100 people?
How does this picture explain it?
Can $£ 2$ be shared equally between 100 people?
How much would each person receive?

Match the calculation with the correct answer.

$4,200 \div 10$
$4,200 \div 100$
$420 \div 10$

Use $<,>$ or $=$ to make each statement correct.
$3,600 \div 10$
$2,700 \div 100$

$4,200 \div 100$ | $3,600 \div 100$ |
| :--- |
| $270 \div 10$ |
| $430 \div 10$ |

Divide by 100

Reasoning and Problem Solving

Eva and Whitney are dividing numbers by 10 and 100	They started with 2,800
They both start with the same 4-digit number.	
They give some clues about their answer.	Whitney divided by 10 to get 280 and Eva divided by 100 to get 28
My answer has 2 hundreds, 8 tens and 0 ones. Whitney	
What number did they both start with? Who divided by what?	

$$
\begin{aligned}
& \text { Use the digit cards to fill in the missing } \\
& \text { digits. } \\
& \begin{array}{rl}
4123 & 4 \\
170 \div 10 & =-- \\
9 & \begin{array}{l}
1,860 \div 10=186 \\
59 \times 100=
\end{array} \\
5,900 \\
64=6,400 \div \\
100
\end{array} \\
& 170 \div 10=17 \\
& 320 \times 10=3,200 \\
& _20 \times 10=3, _00 \\
& 1,8 _0 \div 10=1 _6 \\
& _9 \times 100=5, _00 \\
& 6 _=6,400 \div 100
\end{aligned}
$$

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply by 1 and 0

Notes and Guidance

Varied Fluency

Children explore the result of multiplying by 1 , using concrete equipment.

Linked to this, they look at multiplying by 0 and use concrete equipment and pictorial representations of multiplying by 0

Mathematical Talk

Use number pieces to show me $9 \times 1,3 \times 1,5 \times 1$
What do you notice?
\square Complete:
What does 0 mean?

$4 \times _=4$	$-=1 \times 7$	$0=_\times 42$
$63 \times 1=_$	$__{-} \times 27=0$	$50 \times _=50$

What's the same and what's different about multiplying by 1 and multiplying by 0 ?

Multiply by 1 and 0

Reasoning and Problem Solving

Divide by 1

Notes and Guidance

Children learn what happens to a number when you divide it by 1 or by itself. Using concrete and pictorial representations, children demonstrate how both the sharing and grouping structures of division can be used to divide a number by 1 or itself. Use stem sentence to encourage children to see this e.g. 5 grouped into 5 s equals $1(5 \div 5=1)$
5 grouped into 1 s equals $5(5 \div 1=5)$

Mathematical Talk

What does sharing mean? Give an example.
What does grouping mean? Give an example.

Can you write a worded question where you need to group?
Can you write a worded question where you need to share?

Varied Fluency

Use counters and hands to complete.

- 4 counters shared between 4 hands \qquad \div \qquad $=$ \qquad
- 4 counters shared between 1 hand \qquad \div \qquad $=$ \qquad
- 9 counters grouped in 1 s \qquad \div \qquad
\qquad
- 9 counters grouped in 9s \qquad \div \qquad $=$ \qquad
\square Choose the correct bar model to help you answer this question. Annie has $£ 4$ in total. She gives away $£ 4$ at a time to her friends. How many friends receive $£ 4$?

$£ 4$						
$£ 1$	$£ 1$	$£ 1$	$£ 1$			$£ 4$
:---	:---					

Draw a bar model for each question to help you work out the answer.

- Tommy baked 7 cookies and shared them equally between his 7 friends. How many cookies did each friend receive?
- There are 5 sweets. Children line up and take 5 sweets at a time. How many children have 5 sweets?

Divide by 1

Reasoning and Problem Solving

| Use $<,>$ or $=$ to complete the following: | |
| :--- | :--- | :--- |
| 6 | $\div 5$ |

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply and Divide by 6

Notes and Guidance

Children draw on their knowledge of times tables facts in order to multiply and divide by 6

They use their knowledge of equal groups in using concrete and pictorial methods to solve multiplication and division problems.

Mathematical Talk

How many equal groups do we have? How many are in each group? How many do we have altogether?

Can you write a number sentence to show this?
Can you represent the problem in a picture?
What does each number in the calculation represent?

Varied Fluency

Complete the sentences.

There are \qquad lots of \qquad eggs.

There are \qquad eggs in total.
\qquad \times \qquad = \qquad
First there were \qquad eggs. Then they were shared into \qquad boxes.
Now there are \qquad eggs in each box.
\qquad \div \qquad

$$
=
$$

\qquad
Complete the fact family.
88 88 888 \qquad \times \qquad
 \qquad
\qquad \div \qquad
\qquad
\qquad
\qquad

There are 9 baskets.

Each basket has 6 apples in.
How many apples are there in total?
Write a multiplication sentence to describe this word problem.

Multiply and Divide by 6

Reasoning and Problem Solving

Always, Sometimes, Never	Always, because 6 itself is even and When you multiply any whole number by 6 it will always be an even number. Explain your answer. even \times even will always give an even product.

Teddy says,	Teddy is not correct because 12 $\div 6$ If then $12 \div 6=72$
Is Teddy correct?	
Explain your answer.	

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

6 Times Table \& Division Facts

Notes and Guidance

Children use known table facts to become fluent in the six times table.
For example, applying knowledge of the 3 times table by understanding that each multiple of 6 is double the equivalent multiple of 3
Children should also be able to apply this knowledge to multiplying and dividing by 10 and 100 (for example, knowing that $30 \times 6=180$ because they know that $3 \times 6=18$).

Varied Fluency

\square Complete the number sentences.

$$
\begin{array}{ll}
1 \times 3=- & 1 \times \ldots=6 \\
2 \times-=6 & 2 \times 6=- \\
3 \times 3=- & 3 \times 6=
\end{array}
$$

Mathematical Talk

What do you notice about the 3 times table and the 6 times table?

Can you use $3 \times$ \qquad to work out $6 \times$ \qquad ?

Can you use 7×5 to work out 7×6 ?
Which known fact did you use?

5 times table: 5	10	15	20	25	30
6 times table: 6	12	18	24	30	36

\square Use your knowledge of the 6 times table to complete the missing values?

$$
\begin{array}{lll}
6 \times 2=_ & -\times 6=12 & 6 \times 2 \times 10= \\
-20=120 & 20 \times \ldots=120 & 6 \times 2 \times \ldots=1,200
\end{array}
$$

$6 \times$ \qquad $=1,200$
$200 \times 6=$ \qquad $10 \times$ \qquad $\times 6=120$

6 Times Table and Division Facts

Reasoning and Problem Solving

I am thinking of 2 numbers where the sum of the numbers is 15 and the product is 54	6 and 9 because
What are my numbers?	$9 \times 6=54$ $6 \times 9=54$ $6+9=15$
Think of your own problem for a friend to solve?	$+6=15$
Always, Sometimes, Never	Sometimes. Every even multiple of 3 is a multiple of 6, but the odd multiples of 3 are not multiples of 6
If a number is a multiple of 3 it is also a	
multiple of 6	
Explain why you think this.	

Choose the correct number or symbol

from the cloud to fill in the boxes. | $600 \div 100=6$ |
| :--- |
| $60=600 \div 10$ |

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply and Divide by 9

Notes and Guidance

Children use their previous knowledge of multiplying and dividing to become fluent in the 9 times table.

They apply their knowledge in different contexts.

Mathematical Talk

Can you use concrete or pictorial representations to helpyou answer the questions?

What other facts can you link to this fact?
What other times tables will help you with this times table?
What does each number in the calculation represent?
How many lots of 9 do we have?
How many groups of 9 do we have?

Varied Fluency

Complete the sentences to describe the oranges:
There are \qquad lots of 9

There are \qquad nines.
$4 \times$ \qquad $=$ \qquad

Complete the fact family.

\square Complete the sentences.
There are \qquad lots of \qquad
\qquad \times \qquad $=$
\qquad \div \qquad

There are \qquad lots of \qquad
\times \qquad
\qquad \div \qquad
\qquad

[^0]
Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

Multiply and Divide by 9

Reasoning and Problem Solving

Amir and Whitney both receive some sweets. $100^{4}, 0^{4}, 0,0,0,0,04$ o ${ }^{4}$, 	They both have 54 sweets, arranged in two different arrays.
AmirI have more sweets because I have more rows.	
I have more sweets because I have more in each row.	
Who has more sweets? Explain your reasoning.	

9 Times Table \& Division Facts

Notes and Guidance

Children use known times table facts to become fluent in the 9 times table.
For example, knowing that each multiple of 9 is one less than the equivalent multiple of 10 , and using that knowledge to derive related facts.
Children should also be able to apply the knowledge of the 9 times table when multiplying and dividing by 10 and 100

Mathematical Talk

How did you work out the missing numbers?
What do you notice about the multiples of 9 ?
What do you notice about the 9 times table and the 10 times table?

Varied Fluency

What are the missing numbers from the 9 times table?

9	18	27	-	45
54	-	72	81	90

Circle the multiples of 9 .

54	108	18	24	9	67	72	37

\square Use your knowledge of the 9 times table to complete the missing values.

$$
\begin{array}{ccc}
1 \times 9= & -\quad \times 1=9 & 1 \times 9 \times \ldots=90 \\
-\times 9=90 & 900=100 \times & 9 \times 1 \times 10= \\
9 \times \ldots=900 & 4 \times 9=\ldots & 9 \times 1 \times \ldots=900
\end{array}
$$

What do you notice about the 9 times table and the 10 times table?

$$
\begin{array}{cccccc}
9 \text { times table: } 9 & 18 & 27 & 36 & 45 & 54 \\
10 \text { times table: } 10 & 20 & 30 & 40 & 50 & 60
\end{array}
$$

9 Times Table and Division Facts

Reasoning and Problem Solving

I am thinking of two numbers.
The sum of the numbers in 17 .
The product of the numbers is 72 .
What are my secret numbers?

Can you choose your own two secret numbers from the 9 times table and create clues for your partner?

Always, Sometimes, Never

All multiples of 9 have digits that have a sum of 9 .

```
8 and 9 because
```

8 and 9 because
8\times9=72 or
8\times9=72 or
9\times8=72
9\times8=72
and
and
8+9=17 or
8+9=17 or
9+8=17

```
9+8=17
```

Always.

Multiply and Divide by 7

Notes and Guidance

Children use their knowledge of multiplication and division to multiply by 7
They count in 7 s , and use their knowledge of equal groups supported by use of concrete and pictorial methods to solve multiplication calculations and problems.
They explore commutativity and also understand that multiplication and division are inverse operations.

Mathematical Talk

How many do we have altogether?
What do you notice?
Can you work out the answers by partitioning 7 into 4 and 3?
Which multiples of 7 do you already know from your other tables?

Varied Fluency

Use a number stick to support counting in sevens. What do you notice?

Write down the first five multiples of 7
\square Rosie uses number pieces to represent seven times four. She does it in two ways.

4 sevens
4 lots of 7
4×7

Use Rosie's method to represent seven times six in two ways.
\square Seven children share 56 stickers. How many stickers will they get each?
Use a bar model to solve the problem.
One apple costs 7 pence. How much would 5 apples cost? Use a bar model to solve the problem.

Multiply and Divide by 7

Reasoning and Problem Solving

Mrs White's class are selling tickets at $£ 2$ each for the school play.	Number of tickets (chairs):
The class can sell one ticket for each chair in the hall.	$7 \times 9=63$
There are 7 rows of chairs in the hall. Each row contains 9 chairs.	$63 \times £ 2=£ 126$
How much money will they make?	

What do you notice about the pattern when counting in 7s from 0? Does this continue beyond 7 times 12? Can you explain why?	Odd, even pattern because odd + odd = even.
In which other times tables will you see the	
same pattern?	Then even + odd = odd, and this will continue throughout the whole times table.
	The same pattern will occur in all other odd
multiplication	
tables (e.g. 1,3,5,	
9).	

Year 4 | Autumn Term | Week 9 to 11 - Number: Multiplication \& Division

7 Times Table \& Division Facts

Notes and Guidance

Children apply the facts from the 7 times table (and other previously learned tables) to solve calculations with larger numbers.
They need to spend some time exploring links between multiplication tables and investigating how this can help with mental strategies for calculation.
e.g. $7 \times 7=49,5 \times 7=35$ and $2 \times 7=14$

Mathematical Talk

If you know the answer to three times seven, how does it help you?

What's the same and what's different about the number facts?
How does your 7 times table help you work out the answers?

Varied Fluency

Complete.

$$
\begin{gathered}
3 \times 7= \\
30 \times 7= \\
300 \times 7=
\end{gathered}
$$

Use your knowledge of the 7 times table to calculate.

$$
80 \times 7=_\quad \quad=60 \times 7
$$

$$
70 \times 7=
$$

\qquad

$$
7 \times 500=
$$

\square How would you use times tables facts to help you calculate how many days there are in 15 weeks? Complete the sentences.

There are \qquad days in one week.
\qquad $\times 10=$ \qquad
There are \qquad days in 10 weeks.
\qquad $\times 5=$ \qquad
There are \qquad days in 5 weeks.
\qquad $+$ \qquad $=$ \qquad
There are \qquad days in 15 weeks.

7 Times Table \& Division Facts

Reasoning and Problem Solving

True or False?	True. $\qquad 7 \times 6=7 \times 3 \times 2$
Explain your answer to a friend. Prove using a drawing.	False, because $7 \times$ $6=42$ whereas 7 $\times 7=49$ then 49 $+8=57$
	Children could draw a bar model or bundles of straws.
\qquad	

Children were arranged into rows of seven.
There were 5 girls and 2 boys in each row.

Use your times table knowledge to show how many girls would be in 10 rows and in 100 rows.

Show as many number sentences using multiplication and division as you can which are linked to this picture.

How many children in total are there in 200 rows? How many girls? How many boys?

10 rows

$5 \times 10=50$ girls
100 rows
$5 \times 100=500$
girls

200 rows
Children in total: 7
$\times 200=1,400$
Girls: $5 \times 200=$ 1,000

Boys: $2 \times 200=$ 400

[^0]: What's the same about each question? What's different?

